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STRONGSTABILITY PRESERVINGHIGH-ORDER TIME DISCRETIZATION
METHODS

SIGALGOTTLIEB*,CHI-WANGSHUt, ANDEITANTADMOR$

Abstract. In this paperwereviewandfurtherdevelopa classof strong-stabilitypreserving(SSP)
high-ordertimediscretizationsforsemi-discretemethod-of-linesapproximationsofpartialdifferentialequa-
tions.TermedTVD (totalvariationdiminishing)timediscretizationsbefore,thisclassof high-ordertime
discretizationmethodspreservesthestrong-stabilitypropertiesof first-orderEulertimesteppingandhas
provedveryusefulespeciallyin solvinghyperbolicpartialdifferentialequations.Thenewcontributionsin
thispaperincludethedevelopmentof optimalexplicitSSPlinearRunge-Kuttamethods,their application
to thestrongstabilityofcoerciveapproximations,asystematicstudyof explicitSSPmulti-stepmethods,
andastudyofthestrong-stabilitypreservingpropertyof implicitRunge-Kuttaandmulti-stepmethods.

Key words, strong-stabilitypreserving,Runge-Kuttamethods,multi-stepmethods,high-orderaccu-
racy,timediscretization

Subject classification.AppliedandNumericalMathematics

1. Introduction. It is a commonpracticein solvingtime-dependentPartialDifferentialEquations
(PDEs)to discretizefirst the spatialvariablesto obtaina semi-discretemethod-of-linesscheme.This is
thenasystemofOrdinaryDifferentialEquations(ODEs)in thetimevariablewhichcanbediscretizedand
solvedbyanODEsolver.A relevantquestionhereisstability.Forproblemswithsmoothsolutions,usually
a linearstabilityanalysisisadequate.Forproblemswithdiscontinuoussolutions,however,suchassolutions
to hyperbolicproblems,astrongermeasureof stabilityisusuallyrequired.

In thispaper,wereviewandfurtherdevelopaclassofhigh-orderstrong-stabilitypreserving(SSP)time
discretizationmethodsfor the semi-discretemethod-of-linesapproximationsof PDEs.Thisclassof time
discretizationmethodswasfirstdevelopedin [19]and[18]andwastermedTVD(TotalVariationDiminishing)
timediscretizations.It wasfurtherdevelopedin [6].Theideais to assume that the first-order forward-Euler

time discretization of the method-of-lines ODE is strongly stable under a certain norm, when the time step,

At, is suitably restricted, and then try to find a higher-order time discretization (Runge-Kutta or multi-

step) that maintains strong stability for the same norm, perhaps under a different time-step restriction. In

[19] and [18], the relevant norm was the total variation norm: the Euler forward time discretization of the

method-of-lines ODE was assumed TVD, hence the class of high-order time discretization developed there

was termed TVD time discretizations. This terminology was kept also in [6]. In fact, the essence of this

class of high-order time discretizations lies in its ability to maintain the strong stability in the same norm

as the first-order forward Euler version, hence "strong stability preserving", or SSP, time discretization is a
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more suitable term which will be used in this paper.

We begin this paper by discussing explicit SSP methods. We first give, in §2, a brief introduction for

the setup and basic properties of the methods. We then move in §3 to our new results on optimal SSP

Runge-Kutta methods of arbitrary order of accuracy for linear ODEs suitable for solving PDEs with linear

spatial discretizations. This is used to prove strong stability for a class of well-posed problems nt = L(n)

where the operator L is linear and coercive, improving and simplifying the proofs for the results in [13]. We

review and further develop the results in [19], [18] and [6] for nonlinear SSP Runge-Kutta methods in §4 and

multi-step methods in §5. Section 6 of this paper contains our new results on implicit SSP schemes. It starts

with a numerical example showing the necessity of preserving the strong stability property of the method,

then it moves on to the analysis of the rather disappointing negative results about the non-existence of SSP

implicit Runge-Kutta or multi-step methods of order higher than one. Concluding remarks are given in §7.

2. Explicit SSP Methods.

2.1. Why SSP methods?. Explicit SSP methods were developed in [19] and [18] (termed TVD time

discretizations there) to solve systems of ODEs

d
(2.1) _u = L(u),

resulting from a method-of-lines approximation of the hyperbolic conservation law,

(2.2) ut =-f(u)x,

where the spatial derivative, f(u)x, is discretized by a TVD finite difference or finite element approximation,

e.g., [8], [16], [20], [2], [9]; consult [21] for a recent overview. Denoted by -L(u), it is assumed that the

spatial discretization has the property that when it is combined with the first-order forward Euler time

discretization,

(2.3) U n+l : U n + AtL(un),

then, for a sufficiently small time step dictated by the CFL condition,

(2.4) At _< AtFE,

the Total Variation (TV) of the one-dimensional discrete solution u n := _j u_lo {_j__l _<_<_-1_J*5} does not
increase in time, i.e., the following, so called TVD property, holds

U n
(2.5) TV(?tn+l) _- TV(?tn), TV(?tn) :-- EI j+l --U_I"

J

The objective of the high order SSP Runge-Kutta or multi-step time discretization is to maintain the

strong stability property (2.5) while achieving higher-order accuracy in time, perhaps with a modified CFL

restriction (measured here with a CFL coefficient, c)

(2.6) At _<c AtFE.

In [6] we gave numerical evidence to show that oscillations may occur when using a linearly stable,

high-order method which lacks the strong stability property, even if the same spatial discretization is TVD
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FIG. 2.1. Second-order TVD MUSCL spatial discretization. Solution after the shock moves 50 mesh points. Left: SSP

time discretization; Right: non-SSP time discretization.

when combined with the first-order forward Euler time discretization. The example is illustrative, so we

reproduce it here. We consider a scalar conservation law, the familiar Burgers' equation

ut+(_u"l ---0
X

(2.7)

with a Riemann initial data:

1, if x _ 0(2.8) U(Z, 0) t -0.5, if x>0.

The spatial discretization is obtained by a second-order MUSCL [12], which is TVD for forward Euler time

discretization under suitable CFL restriction.

In Fig. 2.1, we show the result of using a SSP second-order Runge-Kutta method for the time discretiza-

tion (left), and that of using a non-SSP second-order Runge-Kutta method (right). We can clearly see that

the non-SSP result is oscillatory (there is an overshoot).

This simple numerical example illustrates that it is safer to use a SSP time discretization for solving

hyperbolic problems. After all, they do not increase the computational cost and have the extra assurance of

provable stability.

As we have already mentioned above, the high-order SSP methods discussed here are not restricted

to preserving (not increasing) the total variation. Our arguments below rely on convexity, hence these

properties hold for any norm. Consequently, SSP methods have a wide range of applicability, as they can

be used to ensure stability in an arbitrary norm, once the forward Euler time discretization is shown to

be strongly stable 1, i.e., amun + AtL(un)ii __ ilunii . For linear examples we refer to [7], where weighted L 2

SSP higher-order discretizations of spectral schemes are discussed. For nonlinear scalar conservation laws in

several space dimensions, the TVD property is ruled out for high-resolution schemes; instead, strong stability

in the maximum norm is sought. Applications of L_-SSP higher-order discretization can be found in [3],

[9] for discontinuous Galerkin and central schemes. Finally, we note that since our arguments below are

based on convex decompositions of high-order methods in terms of the first-order Euler method, any convex

1By the notion of strong stability we refer to the fact that there is no temporal growth, as opposed to the general notion of

stability which allows a bounded temporal growth, []un[] __ Const. []u°[] with any arbitrary constant, possibly Const > 1.



function will be preserved by such high-order time discretizations. In this context we refer, for example, to

the cell entropy stability property of high-order schemes studied in [17], [15].

2.2. SSP Runge-Kutta methods. In [19], a general m stage Runge-Kutta method for (2.1) is written

in the form:

u (°) = u n,

i--1

(2.9) u (i) = _ (ai,kU (k) + At/3i,kL(u(k))) , ai,k >_ O, i= 1,...,m
k=O

un+ 1 -- u(m).

i--1
Clearly, if all the /3i,k'S are nonnegative, /3i,k > 0, then since by consistency _k=O C_i,k = 1, it follows that

the intermediate stages in (2.9), u (/), amount to convex combinations of forward Euler operators, with At

replaced by Z_,k At We, thus, conclude
O_i, k

LEMMA 2.1. [19]. If the forward Euler method (2.3) is strongly stable under the CFL restriction (2._),

Hun + AtL(un)H < HunH, then the Runge-Kutta method (2.9) with/3i,k > 0 is SSP, Hun+l H < HunH, provided

the following CFL restriction (2. 6) is fulfilled,

(2.10) At < cAtFE, c = min O_i'k
-- i,k fli,k "

If some of the /3i,k'S are negative, we need to introduce an associated operator Z corresponding to

stepping backward in time. The requirement for Z is that it approximates the same spatial derivative(s) as

L, but that the strong stability property holds Hun+lH < HunH, (- either with respect to the TV or another

relevant norm), for first-order Euler scheme, solved backward in time, i.e.,

(2.11) U n+l = U n -- AtZ(un).

This can be achieved, for hyperbolic conservation laws, by solving the negative in time version of (2.2),

(2.12) ut = f(u)x.

Numerically, the only difference is the change of upwind direction. Clearly, Z can be computed with the

same cost as that of computing L. We then have the following lemma.

LEMMA 2.2. [19]. If the forward Euler method combined with the spatial discretization L in (2.3)

is strongly stable under the CFL restriction (2._), Hu_ + AtL(u_)H <_ Hu_H, and if Euler's method solved

backward in time in combination with the spatial discretization Z in (2.11) is also strongly stable under the

CFL restriction (2._), Hu_ - AtZ(un)H <_ Hu_H, then the Runge-Kutta method (2.9) is SSP Hu_+l H _ Hu_H,

under the CFL restriction (2. 6),

(2.13) At < cAtFE, c = min ai,k
- i,k I i,kl'

provided/3i,aL is replaced by/3i,aZ whenever/3i,a is negative.

Notice that, if for the same k, both L(u (a)) and L(u (a)) must be computed, the cost as well as storage

requirement for this k is doubled. For this reason, we would like to avoid negative/3i,a as much as possible.

However, as shown in [6], it is not always possible to avoid negative/3i,a.



2.3. SSPmulti-step methods.SSPmulti-stepmethodsoftheform:

(2.14) un+l : _ (O_iun+l-i -}-At/3iL(un+l-i)), c_i >__O,

i=1

were studied in [18]. Since _ c_i = 1, it follows that un+l is given by a convex combination of forward Euler

solvers with suitably scaled At's, and hence, similar to our discussion for Runge-Kutta methods we arrive

at the following lemma.

LEMMA 2.3. [18]. If the forward Euler method combined with the spatial discretization L in (2.3)

is strongly stable under the CFL restriction (2._), Nun + AtL(u_)H <_ Hu_H, and if Euler's method solved

backward in time in combination with the spatial discretization Z in (2.11) is also strongly stable under the

CFL restriction (2._), Hu_ - AtZ(u_)H <_ HunH, then the multi-step method (2.13) is SSP Hu_+l H _ Hu_H,

under the CFL restriction (2. 6),

(2.15) At < cAtFE, c = min c_i
-- i ]/_i]'

provided/3iL(.) is replaced by/3iZ(.) whenever/3i is negative.

3. Linear SSP Runge-Kutta Methods of Arbitrary Order.

3.1. SSP Runge-Kutta methods with optimal CFL condition. In this section we present a class

of optimal (in the sense of CFL number) SSP Runge-Kutta methods of any order for the ODE (2.1) where

L is linear. With a linear L being realized as a finite dimensional matrix we denote, L(u) = Lu. We will

first show that the m-stage, m-th order SSP Runge-Kutta method can have, at most, CFL coefficient c = 1

in (2.10). We then proceed to construct optimal SSP linear Runge-Kutta methods.

PROPOSITION 3.1. Consider the family of m-stage, m-th order SSP Runge-Kutta methods (2.9) with

nonnegative coefficients (_i,k and/3i,k. The maximum CFL coefficient attainable for such methods is the one

dictated by the forward Euler scheme,

At <_ AtFE,

i.e., (2.6) holds with maximal CFL coefficient c = 1.

Proof. We consider the special case where L is linear, and prove that even in this special case the maximum

CFL coefficient c attainable is 1. Any m-stage method (2.9), for this linear case, can be rewritten as:

u (i) = 1+ Ai,k(AtL) k+l u (°), i = 1,...,m

k=0 /

where

i--1 i--1

Xl,0 ---/_1,0, Xi,° : E OZi,k Xk,o -4- E/_i,k,

k=l k=0

Ai, k z

i-1 i-1

ai,jAj,k + _/3i,jAj,k-1,
j=k_-i j=k

k = 1, ..., i - 1.



In particular,usinginduction,it is easyto showthat thelasttwotermsofthefinalstagecanbeexpanded
as

Am,m_ 1 z rI t_l,l-1

l=l

)A,_,,_-2 = _k,k-2 /_l,l--1 /_l,l--1 -'[- E OZk'k--1 /_l,l--1 •

k=2 l=k+l \/=1 k=l l=l,l:_k

For a m-stage, m-th order linear Runge-Kutta scheme Am,k 1 1-- (k_-l)! . Using A,_,m_l = H21 /_l,l--1 =roT.'

we can rewrite

Am,m_ 2 _ OZk, k-1

k=l m!t_k'k--1 + E t_k,k--2 t_l,l--1 t_l,l--1 •
k=2 l=k+l \/=1

1
With the non-negative assumption on /3i,k'S and the fact Am,m-1 = H21/_l,l-1 z _ we have /31,1-1 > 0 for

_k,k--1 > 1 for all k. Clearly, A,_ ,_-2 - (,_11), is possibleall l. For the CFL coefficient c > 1 we must have _ _ , .

under these restrictions only if/_k,k--2 : 0 and _k,k-1 1 for all k, in which case the CFL coefficient c < 1.
]_k,k --1 --

We remark that the conclusion of Proposition 3.1 is valid only if the m-stage Runge-Kutta method is

m-th order accurate. In [18], we constructed an m-stage, first-order SSP Runge-Kutta method with a CFL

coefficient c = m which is suitable for steady state calculations.

The proof above also suggests a construction for the optimal linear m-stage, m-th order SSP Runge-

Kutta methods.

PROPOSITION 3.2. The class of m stage schemes given (recursively) by:

(3.1)

where OZl,0 : 1 and

(3.2)

U (i) = U (i-1) -_-AtLu (i-1), i = 1, ..., m - 1

m--2

?t(m) = E OZm'k?t(k) -'[- OZm'm--1 (?t(m-1) -'[- AtLU(m-1)) '
k=0

1

OZm, k = _OZm_l,k_l, k = 1,...,m - 2

m--1
1

OZrn'rn--1 -- m!' OZrn,O= 1- _ OZrn,k

k=l

is an m-order linear Runge-Kutta method which is SSP with CFL coefficient c = 1,

At <_ AtFE.

Proof. The first-order case is forward Euler, which is first-order accurate, and SSP with CFL coefficient

c = 1 by definition. The other schemes will be SSP with a CFL coefficient c = 1 by construction, as long as

the coefficients are non-negative.

We now show that scheme (3.1)-(3.2) is m-th order accurate when L is linear. In this case clearly

)u (/) = (1 + AtL) i u (°) = k!(i - k)! (AtL)k u(°)' i = 1, ..., m - 1,
k=0



hence scheme (3.1)-(3.2) results in

u('_) = (_'_'J k!(j-- k)! (AtL)k + °Zm'm-1 k!(m -- k)! (AtL)k u(°)"
\ j=o k=o k=o

m! 1 the coefficient of (AtL) m isClearly, by (3.2), the coefficient of (AtL) "_-1 is c_,_,,_-1(,__1)! - (,_:1)!,
1

c_,_,,_-1 = _.,, and the coefficient of (AtL) ° is

m--2
1

j=0

It remains to show that, for 1 < k < m - 2, the coefficient of (AtL) k is equal to _.,:

1 ,_-2 j! _ 1
(3.3) - k)! + k!(j - k)! k!

j=k

This will be shown by induction. Thus, we assume (3.3) is true for m, then for m + 1 we have, for 0 < k <

rn - 2, the coefficient of (AtL) k+l is equal to

m--1 j! __ ( _:_ (l + 1)!'_

1 1 1

(k+l)!(m_k)! + E _m+l'J(k_4_l)!(j_k_l) ! (k+l)! (T/_t--]_)!-_-'_OZmA-I'/A-I_)
j=kA-1 l=k

_ 1 1 l_ k 1 _) (_m,l(k+l)! (m-k)! + (l+
z

( )1 1 l!

- (k + 1)! (m - k)! + E ozm,l_
l=k

1

(k + 1)!

where in the second equality we used (3.2) and in the last equality we used the induction hypothesis (3.3).

This finishes the proof.
1

Finally, we show that all the a's are non-negative. Clearly a2,o = oz2,1 ---- _ > 0. If we assume a,_,j >_ 0

for all j = 0, ...,m - 1, then

1 1

OZmA-i,j = jOZm,j_ 1 ___ 0, j = 1,...,m--1; OZmA-i'm (re+l)! >0,

and, by noticing that a,_+l,j <_ a,_,j-1 for all j = 1, ..., m, we have

m m

OZm+l,0---- 1-- EOZm+l,j ___ 1--EOZm,j_l = 0."

j=l j=l

As the m-stage, m-th order linear Runge-Kutta method is unique, we have in effect proved this unique

m-stage, m-th order linear Runge-Kutta method is SSP under CFL coefficient c = 1. If L is nonlinear,

scheme (3.1)-(3.2) is still SSP under CFL coefficient c = 1, but it is no longer m-th order accurate. Notice

that all but the last stage of these methods are simple forward Euler steps.

We note in passing the examples of the ubiquitous third- and forth-order Runge-Kutta methods, which

admit the following convex - and hence SSP decompositions

3

(3.4) _ l(AtL)k 1 _k. =5 + (I+AtL)+ (I+AtL) 3
k=0

4

1 k 3 _(I AtL) _(I AtL) 2 _--_(I-_-AtL) 4.(3.5) Ev(AtL) = _+ + + + +
k=0



TABLE 3.1

Coefficients am,j of the SSP methods (3.1)-(3.2)

order m am,o OZm,1 OZm,2 OZm,3 OZm,4 OZm,5 OZm,6 OZm,7

1 1

1 1
2 _

1 1 1
3 _ _

4 3_ ! ! 1
8 3 4 24

5 11 3 1 1 1
3_ 8 6 17 12_

6 53 11 3 1 1 1
144 30 16 18 48 720

103 53 11 3 1 1 1

280 144 60 48 72 240 5040

2119 103 53 11 1 1 1 1

5760 280 288 180 64 360 1440 40320

We list, in Table 3.1, the coefficients a,_,j of these optimal methods in (3.2) up to m = 8.

3.2. Application to coercive approximations. We now apply the optimal linear SSP Runge-Kutta

methods to coercive approximations. We consider the linear system of ODEs of the general form, with

possibly variable, time-dependent coefficients,

d L(t)u(t).(3.6)  u(t) =

As an example we refer to [7], where the far-from-normal character of the spectral differentiation matrices

defies the straightforward von-Neumann stability analysis when augmented with high-order time discretiza-

tions.

We begin our stability study for Runge-Kutta approximations of (3.6) with the first-order forward-Euler

scheme (with (., .) denoting the usual Euclidean inner product)

un+ 1 = u _ + At_L(t_)u _,

n--1 L 2based on variable time-steps, t _ := _j=0 Atj. Taking norms on both sides one finds

bn+il2 _-lull 2 + 2At_Re<L(t_)u_,u _) + (At_)21L(t_)u_12,

and hence strong stability holds, Ju_+lJ _< JunJ, provided the following restriction on the time step, Ate, is

met,

At_ <_ -2Re<L(t_)u _, un)/lL(tDu_12.

Following Levy and Tadmor [13], we therefore make the

ASSUMPTION 3.1.

_(t) > 0 such that

(Coercivity). The operator L(t) is (uniformly) coercive in the sense that there exists

(3.7) := inf Re<L(t)u,u) > O.
JuJ=l IL(t)ul2



We conclude that for coercive L's, the forward Euler scheme is strongly stable, IlI+ AtnL(tn)ll _< 1, if

and only if

ZXtn _< 2,(t D.

In a generic case, L(t _) represents a spatial operator with a coercivity-bound r](t_), which is proportional

to some power of the smallest spatial scale. In this context the above restriction on the time-step amounts

to the celebrated Courant-Friedrichs-Levy (CFL) stability condition. Our aim is to show that the general

m-stage, m-th order accurate Runge-Kutta scheme is strongly stable under the same CFL condition.

Remark. Observe that the coercivity constant, r], is an upper bound in the size of L; indeed, by Cauchy-

Schwartz, r](t) _< IL(t)ul" lul/IL(t)ul 2 and hence

(3.8) IIL(t)ll--sup IL(t)u_l < 1
lul -

To make one point we consider the fourth-order Runge-Kutta approximation of (3.6)

(3.9) ]gl = L(tn)u n

(3.10) k 2 = L(tn+½)(u n -4- _]gl)

(3.11) k 3 = L(t_+½)(u _ + _k 2)

(3.12) ]g4 = L(tn+l)(un + Atnk 3)

At_
(3.13) un+l = U n _.}__ []gl _.}_2]g2 _.}_2]g3 _.}_]g4].

Starting with second-order and higher the Runge-Kutta intermediate steps depend on the time variation

of L(.), and hence we require a minimal smoothness in time, making

ASSUMPTION 3.2.

If > 0 such that

(3.14)

(Lipschitz regularity). We assume that L(.) is Lipschitz. Thus, there exists a constant

K sl"
IlL(t)- L(s)ll  lt-

We are now ready to make our main result, stating

PROPOSITION 3.3. Consider the coercive systems of ODEs, (3.6)-(3.7), with Lipschitz continuous coef-

ficients (3.13). Then the fourth-order Runge-Kutta scheme (3.9-3.13) is stable under CFL condition,

(3.15)

and the following estimate holds

(3.16)

Remark. The result along these lines was introduced by Levy and Tadmor [13, Main Theorem], stating the

strong stability of the constant coefficients s-order Runge-Kutta scheme under CFL condition At_ _< Csr] (t_).



Hereweimproveinbothsimplicityandgenerality.Thus,forexample,thepreviousboundof C4 = 1/31 [13,

Theorem 3.3] is now improved to a practical time-step restriction with our uniform C8 = 2.

Proof. We proceed in two steps. We first freeze the coemcients at t = t n, considering (here we abbreviate

L _ = L(t_))

(3.17) jl = L_u _

At_ n(3.18) j2 = Ln(u n + ji) -- Ln(i + _-L )u

(3.19) j3 = Ln(u_ + jS) -- L_ I + _--L (I + L _) u _

(3.20) j4 = Ln(u n + Atnj3)

At_
(3.21) vn+l = u n + 6-- [jl + 2j2 + 2j3 + j4].

Thus, v _+1 = P4(At_L_)u _, where following (3.5)

P4(AtnL_ ) := 3_i 1 _(I + AtL) 2 1(I +8 + 5 (I + AtL) + + AtL) 4.

Since the CFL condition (3.15) implies the strong stability of forward-Euler, i.e. HI+ At_L_N < 1, it follows

that NP4(At_Ln)N < 3/8+ 1/3+ 1/4+ 1/24 = 1. Thus,

(3.22) Ivn+ll _ lull .

Next, we turn to include the time dependence. We need to measure the difference between the exact

and the 'frozen' intermediate values - the k's and the j's. We have

(3.23) kl _ jl

(3.24) k 2 _ j2

(3.25) k 3 _ j3

(3.26) k4 __ j4

Lipschitz continuity (3.14) and

=0

r 3 Atn n- n
= L(t )j(z+ T n )u

= L(tn+l)Atn(k3 _ j3) + [L(tn+l) _ L(tn)] Atnj3.

the strong stability of forward-Euler imply

K" At_

(3.27) Ik2-J21 -< 7_(F) lu"l -<Klu"l"

1
Also, since NLnN _ _Fz_, we find from (3.18) that Ijsl <_ lu"l/_(t"), and hence (3.25) followed by (3.27) and

the CFL condition (3.15) imply

Atn k2_j2 K.Atn Atn lunl ( Atn'_2
(3.28) Ik3-j31 < _ I+ 2_(t_" 2_) << 2K\2_T_ff lunl<2Klunl"

1 Atn n
Finally, since by (3.19) j3 does not exceed, Ij31 < _ (1 + 2_Tz_)lu I, we find from (3.26) followed by (3.28)

and the CFL condition (3.15),

(3.29) I]_ 4 --j41 _ I]_ 3 --j31 + z](tn_ z](tn) 1+ 2_] lunl

S K \_) + \_) ) lunl S 12Klu_l•
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We conclude that U n+l,

Atn
[2(]_2 __ j2) + 2(]_3 __ j3) + (]_4 __ j4)],un+l ---- vn+l + T

is upper bounded by, consult (3.22), (3.27)-(3.29),

]'it n+l ] _ IV n+l ] + _ [ 2/(]un] + 4K]u n] + 12K]un]]

(1 + 3KAt_)]u _]

and the result (3.16) follows. •

4. Nonlinear SSP Runge-Kutta Methods. In the previous section we derived SSP Runge-Kutta

methods for linear spatial discretizations. As explained in the introduction, SSP methods are often required

for nonlinear spatial discretizations. Thus, most of the research to date has been in the derivation of SSP

methods for nonlinear spatial discretizations. In [19], schemes up to third order were found to satisfy the

conditions in Lemma 2.1 with CFL coefficient c = 1. In [6] it was shown that all four stage, fourth-order

Runge-Kutta methods with positive CFL coefficient c in (2.13) must have at least one negative /_i,k, and

a method which seems optimal was found. For large scale scientific computing in three space dimensions,

storage is usually a paramount consideration. We review the results presented in [6] about strong stability

preserving properties among such low-storage Runge-Kutta methods.

4.1. Nonlinear methods of second, third and fourth order. Here we review the optimal (in the

sense of CFL coefficient and the cost incurred by L if it appears) SSP Runge-Kutta methods of m-stage,

m-th order, for m = 2, 3, 4, written in the form (2.9).

PROPOSITION 4.1. [6]. If we require /3i,k >_ O, then an optimal second-order SSP Runge-Kutta method

(2.9) is given by

(4.1) U (1) -- U n + AtL(u _)

un+l = _un + _u(1) + _AtL(u(1)),

with a CFL coefficient c = 1 in (2.10). An optimal third-order SSP Runge-Kutta method (2.9) is given by

U (1) -- U n + AtL(u _)

(4.2) 3 n _U (1) _AtL(u (1))u (2) = _u + +

un+l = _un + _u(2) + _AtL(u(2)),

with a CFL coefficient c = 1 in (2.10).

In the fourth-order case we proved in [6] that we cannot avoid the appearance of negative/_i,k:

PROPOSITION 4.2. [6]. The ]our-stage, fourth-order SSP Runge Kutta scheme (2.9) with a nonzero

CFL coefficient c in (2.13) must have at least one negative/3i,k.

We thus must settle for finding an efficient fourth-order scheme containing L, which maximizes the

operation cost measured by 7+i, where c is the CFL coefficient (2.13) and i is the number of Ls. This way

we are looking for a SSP method which reaches a fixed time T with a minimal number of evaluations of L

11



or L. The best method we could find in [6] is:

U(1) = U n -_- _ AtL(u n)

u(2) _ 649 (0) 10890423At L un 951 (1) 5000A L (1)
1766u ( )+1766 u t )

(4.3) u (3) - _u53989 _ 500_102261AtL(u _) + 200_u4806213(1)

5121 AtL(u(- 1)) 23619 (2) 7873
2Tdgo + 37666 + 1 556AtL( (e))

6127 (1) 1
un+l : _un..Jr- 1/_tL(un)-Jr- @u -Jr- _/_tL(u(l))-Jr- _u(2) -Jr- _u(3) -Jr- _/_tL(u(3) )

with a CFL coefficient c -- 0.936 in (2.13). Notice that two Ls must be computed. The effective CFL
4

coefficient, comparing with an ideal case without Ls, is 0.936 x g = 0.624. Since it is difficult to solve the

global optimization problem, we do not claim that (4.3) is an optimal four stage, 4th-order SSP Runge-Kutta

method.

4.2. Low storage methods. For large scale scientific computing in three space dimensions, storage

is usually a paramount consideration. Therefore, low storage Runge-Kutta methods [22], [1], which only

require two storage units per ODE variable, may be desirable. Here we review the results presented in [6]

concerning strong stability preserving properties among such low-storage Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form [22], [1]:

u (°) =u n, du (°) =0,

du (i) = Aidu (i-1) -_-AtL(u(i-1)), i = 1,... ,m,

(4.4) u (i) = u (i-l) + Bidu (i), i = 1,..., m, B1 = c,

?tnq-1 -- ?t(m) ,

Only u and du must be stored, resulting in two storage units for each variable.

Following Carpenter and Kennedy [1], the best SSP third-order method found by numerical search in

[6] is given by the system

Zl z V/36c 4 + 36c 3 -- 135c e + 84c -- 12, ze =

z3 = 12c 4 -- 18c 3 + 18c e -- 11c + 2, z4 =

z5 = 69c 3-62c e+28c-8, z6 =

2c e + c - 2

36c 4 - 36c 3 + 13c e - 8c + 4

34c 4 - 46c 3 + 34c e - 13c + 2

12c(c - 1)(3ze - Zl) -- (3Z2 -- zl) e

Be --- 144c(3c- 2)(c- 1) e , B3

-24(3c- 2)(c- 1) e

(3ze - zl) e - 12c(c - 1)(3ze - Zl)

-z1(6c2 - 4c + 1) + 3z3
Ae = A3

(2c+ 1)Zl -- 3(c+ 2)(2c-- 1) e'

--ZlZ4+108(2c -- 1)c 5 -- 3(2c -- 1)z5

24ZLC(C -- 1) 4 -+-72cz6 -+-72c6(2c -- 13)

with c -- 0.924574, resulting in a CFL coefficient c -- 0.32 in (2.6). This is, of course, less optimal than

(4.2) in terms of CFL coefficient, but the low-storage form is useful for large scale calculations. Carpenter

and Kennedy [1] have also given classes of five-stage, fourth-order low-storage Runge-Kutta methods. We

have been unable to find SSP methods in that class with positive ai,k and /3i,k. A low-storage method with

negative/3i,k cannot be made SSP, as L cannot be used without destroying the low-storage property.
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4.3. Hybrid multi-step Runge-Kutta methods. Hybrid multi-step Runge-Kutta methods (e.g.,

[10] and [14]) are methods which combine the properties of Runge-Kutta and multi-step methods. We

explore the two-step, two-stage method:

(4.5) un+½ = OZ2lUn -_-oz20u n-I -_- At (/320L(u n-i) +/321L(un)), OZ2k _ 0,

^, _.n+ ½ n
un+ 1 -- Oz30 un-1 -}- tx31¢_ -}- OZ32U

(4.6) +At (/_3oL(un-i) ___/_31L( un-}-½ ) -_- /_32 n(un)) . OZ3k --> 0.

Clearly, this method is SSP under the CFL coemcient (2.10) if/3i,a > O. We could also consider the case

allowing negative /3i,a's, using instead (2.13) for the CFL coemcient and replacing/3i,aL by /3i,aL for the

negative/3i,a's.

For third order accuracy, we have a three parameter family (depending on c, 43o, and 431):

a20 = 3c 2 + 2c 3

_20 = c2 + c3

OZ21---- 1 - 3c 2 - 2c 3

/_21 ---- C + 2C2 -4-C 3

2 + 2oz30 - 3c + 3oz30c + OZ31c3
(4.7) /33o =

6(1 + c)

5 -- OZ30 -- 3OZ31C 2 -- 2OZ31C 3

_31 =
6c + 6c 2

OZ32 ---- 1 - 0z31 - oz30

-5 -4-43o -4-9c -4-3OZ30C -- 3OZ31 c2 -- OZ31 c3

_32 =
6c

The best method we were able to find is given by c = 0.4043, a30 = 0.0605 and a31 = 0.6315, and has a

CFL coefficient c _ 0.473. Clearly, this is not as good as the optimal third-order Runge-Kutta method (4.2)

with CFL coefficient c = 1. We would hope that a fourth-order scheme with a large CFL coefficient could

be found, but unfortunately this is not the case as is proven in the following

PROPOSITION 4.3. There are no fourth-order schemes (4.5) with all non-negative ozi,k.

Proof. The fourth-order schemes are given by a two-parameter family depending on c, (_30, and setting (_31

in (4.7) with

-7 - 430 + 10c - 20z30c

OZ31 = c2(3 + 8c + 4c 2)

The requirement 421 > 0 enforces, consult (4.7), c < 1 The further requirement 42o > 0 yields

3 <C< 1 1 1_ _ _-. OZ31has a positive denominator and a negative numerator for -7 < c < 7, and its denominator

1 3 3 < C < 1 In this range, the denominator of OZ31 isis 0 when c = -7 or c = -7, thus, we require -7 - -7"

negative, hence we also require its numerator to be negative, which translates to 430 < -7+10c Finally, we
-- 1A-2c "

c 2 (2cA-l)(2cA-3)A-7-10c

would require 432 = 1 - 431 - 43o > 0, which translates to 43o > (2c+1)(2c_1)(c+1)2 . The two restrictions

on 43o gives us the following inequality:

-7+ 10c > c2(2c+ 1)(2c+3) + 7- 10c
1+2c - (2c+1)(2c-1)(c+1) 2 '

3 < c < 1 yields c > 1 -- a contradiction. •which, in the range of - _ _ - 7,
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5. Linear and Nonlinear Multi-step Methods. In this section, we review and further study SSP

explicit multi-step methods (2.14), which were first developed in [18]. These methods are r-th order accurate

if

m

(5.1) E (_i = 1
i=1

z_..ikai = ik-1/_i , k = 1,...,r.
i=l \i=l /

We first prove a proposition which sets the minimum number of steps in our search for SSP multi-step

methods.

PROPOSITION 5.1. For m > 2, there is no m-step, (m+ l)-th order SSP method, and there is no m-step,

m-th order SSP method with all non-negative/3i.

Proof. By the accuracy condition (5.1), we clearly have

m m

(5.2) Zp(i) i-- Zp'(i) i
i=1 i=1

for any polynomial p(x) of degree at most r satisfying p(0) -- 0.

When r = m + 1, we could choose

fox(5.3) p(x) = q(t)dt, q(t) = II(i - t).
i=1

Clearly pt(i) = q(i) = 0 for i = 1,...,m. We also claim (and prove below) that all the p(i)'s, i = 1,... ,m,

are positive. With this choice of p in (5.2), its right-hand side vanishes, while the leR hand side is strictly

positive if all (_i _ 0 -- a contradiction.

When r = m, we could choose

p(x) = x(m -- X) m-1.

Clearly p(i) >_ 0 for i = 1, ...,m, equality holds only for i = m. On the other hand, pt(i) = m(1 -i)(m -

i) "_-2 _ 0, equality holds only for i = 1 and i = m. Hence (5.2) would have a negative right side and a

positive left side and would not be an inequality, if all (_i and/3i are non-negative, unless the only nonzero

entries are (_,_, /_1 and/3,_. In this special case we have (_,_ = 1 and/_1 ---- 0 to get a positive CFL coefficient

c in (2.15). The first two order conditions in (5.1) now leads to/3,_ = m and 2/3,_ = m, which cannot be

simultaneously satisfied.

We conclude with the proof of the

Claim. p(i) = fo q(t)dt > 0, q(t) := Him=l (i - t).

Indeed, q(t) oscillates between being positive on the even intervals I0 = (0,1),/2 = (2,3),... and being

negative on the odd intervals, I1 = (1, 2),/3 = (3, 4),.... The positivity of the p(i)'s for i < (m + 1)/2 follows

since the integral of q(t) over each pair of consecutive intervals is positive, at least for the first [(m + 1)/2]

intervals,

p(2k + 2) - p(2k) = _ [q(t)[dt - fi2 [q(t)[dt = _ - _ [(l - t)(2 - t) . . . (m - t),dt
2k k+l k k+l

= / I(1 - t)(2 - t)... (m- 1 - t)l x (l(m- t)l - M)dt > O, 2k + 1 <_ (m + 1)/2.
J12 k

14



For the remaining intervals, we note the symmetry of q(t) w.r.t.

(-1)'_q(m + 1 - t), which enables us to write for i > (m + 1)/2

(5.4)

the midpoint (m + 1)/2, i.e., q(t) =

(m+l)/2 /irn
p(i) = q(t)dt + (-1) "_ q(m + 1 - t)dt

JO +1)/2

f(m+l)/2 f(m+l)/2= q(t)dt + (-1) "_ q(t')dt'.
J0 J,rn+l--i

Thus, if m is odd then p(i) = p(m + 1 - i) > 0 for i > (m + 1)/2. If m is even, then the second integral on

the right of (5.4) is positive for odd i's, since it starts with a positive integrand on the even interval,/m+l-i.

And finally, if m is even and i is odd, then the second integral starts with a negative contribution from its

first integrand on the odd interval, Zm+l_i, while the remaining terms that follow cancel in pairs as before; a

straightforward computation shows that this first negative contribution is compensated by the positive gain

from the first pair, i.e.,

fo fm+2-ip(m + 2 -- i) > q(t)dt + q(t)dt > O, m even, i odd.
J m+l--i

This concludes the proof of our claim. •

We remark that [4] contains a result which states that there are no linearly stable m-step, (m + 1)-th

order method when m is odd. When m is even, such linearly stable methods exist but would require negative

ai. This is consistent with our result.

In the remainder of this section we will discuss optimal m step, m-th order SSP methods (which must

have negative 3i according to Proposition 5.1 and m step, (m - 1)-th order SSP methods with positive 3i.

For two-step, second-order SSP methods, a scheme was given in [18] with a CFL coefficient c = 12

(Scheme 1 in Table 5.1). We prove this is optimal in terms of CFL coefficients.

PROPOSITION 5.2. For two-step, second-order SSP methods, the optimal CFL coefficient c in (2.15) is
1

Proof. The accuracy condition (5.1) can be explicitly solved to obtain a one-parameter family of solutions

1 1
a2 = 1 - al, 31 = 2 -- =al, 32 = --=al.

g g

1 achievedThe CFL coefficient c is a function of oz1 and it can be easily verified that the maximum is c =

4 •
at OZ1 = _.

We move on to three-step, second-order methods. It is now possible to have SSP schemes with positive

1 (Scheme 2 in Table 5.1). We proveai and 3i. One such method is given in [18] with a CFL coefficient c =

this is optimal in CFL coefficient in the following proposition. We remark that this multi-step method has

the same efficiency as the optimal two-stage, second-order Runge-Kutta method (4.1). This is because there

is only one L evaluation per time step here, compared with two L evaluations in the two-stage Runge-Kutta

method. Of course, the storage requirement here is larger.

PROPOSITION 5.3.

coefficient c = 1
2"

If we require 3i >_ O, then the optimal three-step, second-order method has a CFL
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Proof. The coefficients of the three-step, second-order method are given by,

1
1 (6 - 3ill - f12 +/_3) OZ2 = --3 + 2ill -- 2fl3, OZ3 ---- (2 -- /_1 -+- /_2 -+- 3fl3)

OZ1 = 2 ' 2 "

1 c_k 1 for all k. This impliesFor CFL coefficient c > _ we need _ >

2OZl > fll =_ 6 -- 4fll -- f12 _- f13 > 0

2oz2 > f12 =_ --6 -6 4fll -- f12 -- 4fl3 > 0

This means that

_2 - _3 < 6 - 4fll < -f12 - 4_3 _ 2_2 < -3_3.

Thus, we would have a negative/3. •

We remark that if more steps are allowed, then the CFL coemcient can be improved. Scheme 3 in Table

5.1 is a four-step, second-order method with positive c_i and/3i and a CFL coemcient c = _2
3"

We now move to three-step, third-order methods. In [18] we gave a three-step, third-order method with

a CFL coemcient c _ 0.274 (Scheme 4 in Table 5.1). A computer search gives a slightly better scheme

(Scheme 5 in Table 5.1) with a CFL coemcient c _ 0.287.

Next we move on to four-step, third-order methods. It is now possible to have SSP schemes with positive

1 (Scheme 6 in Table 5.1). We prove thisc_i and/3i. One example was given in [18] with a CFL coefficient c --

is optimal in the CFL coefficient in the following proposition. We remark again that this multi-step method

has the same efficiency as the optimal three-stage, third-order Runge-Kutta method (4.2). This is because

there is only one L evaluation per time step here, compared with three L evaluations in the three-stage

Runge-Kutta method. Of course, the storage requirement here is larger.

PROPOSITION 5.4. If we require /3i >_ O, then the optimal four-step, third-order method has a CFL

coefficient c = 1
3"

Proof. The coefficients of the four step, third order method are given by,

1
(24 - 11/31 - 2fl2 +/_3 -- 2fl4) "2 = --6 + 3fll -- 1fl2 --/_3 -+- 3/_4,

OZlZ_

3 1 1 (-6 + 2fll - f12 + 2fl3 + 11/34).
a3 = 4 - _fll -+- f12 -+- _f13 - 3fl4, O_4 ----

1 ak 1

For a CFL coefficient c > _ we need _ > _ for all k. This implies:

24 - 13fll - 2fl2 -_- f13 - 2fl4 > 0,-36 + 18fll - 5fl2 - 6/33 + 9fl4 > 0,

24 - 9fll -_-6/32 +/33 - 18fl4 > 0,-6 -_-2fll - f12 -_-2fl3 -_-9fl4 > 0.

Combining these (9 times the first inequality plus 8 times the second plus 3 times the third) we get:

-40_2 - 36_3 > 0,

which implies a negative/3. •

We again remark that if more steps are allowed, the CFL coefficient can be improved. Scheme 7 in Table

1 Scheme 8 in Table5.1 is a five-step, third-order method with positive c_i and/3i and a CFL coefficient c = 3"

5.1 is a six-step, third-order method with positive c_i and/3i and a CFL coefficient c = 0.567.
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TABLE5.1
SSP multi-step methods (2.14)

# steps order CFL

m r c

1
1 2 2

1
2 3 2

3 4 2 2_
3

4 3 3 0.274

5 3 3 0.287

1
6 4 3

1
7 5 3

8 6 3 0.567

9 4 4 0.154

10 4 4 0.159

11 6 4 0.245

12 5 4 0.021

13 5 5 0.077

14 5 5 0.085

15 6 5 0.130

OZi

4 1

5'5

1
3,0,

1
_,0,0, y

4 2 1

7' 7' 7

2973 351 623

5000 ' 1250 ' 5000

21_, O, 0 ' 11

7
_,0,0,0,

108 [1 [1 [1 171_,-, -,-, 0, 1_

29 7 1 1

72' 24' 4' 18

1989 2893 517 34

5000' 10000' 2000' 625

747 N N N 81 ±

1557 1 1 2063

32000' 32000' 120' 48000' 10

1 1 7 1 1

4' 4' 24' 6' 24

1 13 8 7 3

4'50' 25' 50' 100

734071020' 10' 15' ' 120'

8 2

5' 5

_,0,0

4,0,0,0

25 20 37

12 ' 21 ' 84

1297 49 1087

625 ' 50' 2500

4
_, 0,0, y

5
1_, 0,0, 0, i_

6
_,0,0,0,0, _

481 1055 937 197

192' 576 ' 576' 576

601613 1167 130301 82211

240000' 640 ' 80000 ' 240000

237 N N N 165 3
1_8' _' _'-' 128' 8

5323561 2659 904987 1567579 N
2304000' 2304000' 2304000' _'

185 851 91 151 199

64 ' 288' 24' 96 ' 576

52031 26617 1412 14407 6161

18000' 9000 ' 375 ' 9000 ' 18000

291201 198401 88063 N 17969 73061
108000' 86400 ' 43200' _' 43200' 432000

We now move on to four-step, fourth-order methods. In [18] we gave a four-step, fourth-order method

(Scheme 9 in Table 5.1) with a CFL coefficient c _ 0.154. A computer search gives a slightly better scheme

with a CFL coefficient c _ 0.159, Scheme 10 in Table 5.1. If we allow two more steps, we can improve the

CFL coefficient to c = 0.245, Scheme 11 in Table 5.1.

Next we move on to five-step, fourth-order methods. It is now possible to have SSP schemes with positive

(_i and fli. The solution can be written in the following five-parameter family:

1 (55 + 9(_2 + 8(_3 + 9oz4 + 24fl5),
a5 = 1 - o_ 1 - o_ 2 - O_3 -- O_4, /_1 ----

/32 ----1 (5 -- 64(_1 -- 45a2 -- 32a3 -- 37(_4 -- 96/35),

1
/33 ---- 24 (5 + 32(_1 + 27a2 + 40a3 + 59(_4 + 144/35),

1

/_4 ---- 24 (55 - 64(_1 - 63a2 - 64a3 - 55o_4 -- 96/35) •
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55hencetheCFLcoefficientWecanclearlyseethatto get/32_ 0 wewouldneedOZ1 __< 5' and also /_1 ___ _,

cannot exceed c < _1 < s_ _ 0.034. A computer search gives a scheme (Scheme 12 in Table 5.1) with a

CFL coemcient c = 0.021. The significance of this scheme is that it disproves the belief that SSP schemes

of order four or higher must have negative/3 and hence must use L (see Proposition 4.2 for Runge-Kutta

methods). However, the CFL coemcient here is probably too small for the scheme to be of much practical

use.

We finally look at five-step, fifth-order methods. In [18] a scheme with CFL coemcient c = 0.077 is

given (Scheme 13 in Table 5.1). A computer search gives us a scheme with a slightly better CFL coemcient

c _ 0.085, Scheme 14 in Table 5.1. Finally, by increasing one more step, one could get [18] a scheme with

CFL coemcient c -- 0.130, Scheme 15 in Table 5.1.

We list in Table 5.1 the multi-step methods studied in this section.

6. Implicit SSP Methods.

6.1. Implicit TVD stable scheme. Implicit methods are useful in that they typically eliminate the

step-size restriction (CFL) associated with stability analysis. For many applications, the backward-Euler

method possesses strong stability properties that we would like to preserve in higher-order methods. For

example, it is easy to show a version of Harten's lemma [8] for the TVD property of the implicit backward-

Euler method:

LEMMA 6.1. (Harten). The following implicit backward-Euler method

(6.1) u_+l n [ {_n+l nW1]_Dj_½ ( n+l n+l)]• = uj + At Cj+½ \t_j+ 1 -- Uj ] \Uj -- Uj_ 1

where Cj+ ½ and D j_ ½ are functions of un and/or u n+l at various (usually neighboring) grid points satisfying

(6.2) Cj+½ >_ 0, Dj_½ >_ 0,

is TVD in the sense of (2.5) for arbitrary At.

Proof. Taking a spatial forward difference in (6.1) and moving terms, one gets

[1 + At(Cj+½ + Dj+½)] \'(tj+ l{_n+l- ujn+l]]

= Uj+ 1 -- Uj + AtCj+_ {° n+l _ n+lh ( n+l n+l]_j+2 _j+l ) + AtDj_ ½n n __ \Uj -- Uj_ 1 !

Using the positivity of C and D in (6.2), one gets

[1 + At (Cy+½ + Dy+½)] '(tj+1_n+l -- U_+I. J

< JUj% 1 --U_J-[- AtCj+_ _n+l _n+l n+l _n+l_ '(tj+ 2 --'(tj+ 1 J-I-AtDj_ ½ uj -(tj_ 1 J,

which, upon summing over j, would yield the TVD property (2.5). •

Another example is the cell entropy inequality for the square entropy, satisfied by the discontinuous

Galerkin method of arbitrary order of accuracy in any space dimensions when the time discretization is by

a class of implicit time discretization including backward-Euler and Crank-Nicholson, again without any

restriction on the time step At [11].

As in Section 2 for explicit methods, here we would like to discuss the possibility of designing higher-

order implicit methods that share the strong stability properties of backward-Euler without any restriction

on the time step At.

18



Unfortunately, we are not as lucky in the implicit case. Let us look at a simple example of second-order

implicit Runge-Kutta methods:

(6.3) U (1) ---- un -_- /31AtL(u (1))

un+ 1 : O_2,0 un -_-O_2,1U(1) -_-/32AtL(un+l).

Notice that we have only a single implicit L term for each stage and no explicit L terms, in order to avoid

time step restrictions necessitated by the strong stability of explicit schemes. However, since the explicit

L(u (1)) term is contained indirectly in the second stage through the u (1) term, we do not lose generality in

writing the schemes as the form in (6.3) except for the absence of the L(u n) terms in both stages.

To simplify our example we assume L is linear. Second-order accuracy requires the coemcients in (6.3)

to satisfy

1 1 - 2/31

(6.4) OZ2'l -- 2/31(1 -- _1)' OZ2,0 = 1 - o_2,1, _2 -- 2(1 -- _1)

To obtain a SSP scheme out of (6.4) we would require 62,0 and oz2,1 to be non-negative. We can clearly see

that this is impossible as oz2,1 is in the range [4, +cx_) or (-cx_, 0).

We will use the following simple numerical example to demonstrate that a non-SSP implicit method

may destroy the non-oscillatory property of the backward-Euler method, despite the same underlying non-

oscillatory spatial discretization. We solve the simple linear wave equation

(6.5)

with a step-function initial condition:

Ut z ?t x

1, if x _< 0
(6.6) U(X, O)

0, ifx >0.

ux in (6.5) is approximated by the simple first order upwind difference:

The backward-Euler time discretization

1

L(u)j = Axx (?tJ_-i -- ?tj).

U n_-I = U n -_- AtL(u n+l)

for this problem is unconditionally TVD according to Lemma 6.1. We can see on the left of Fig. 6.1 that the
3

solution is monotone. However, if we use (6.3)-(6.4) with /_1 ---- 2 (which results in positive/32 ----3, c_2,0 ---- 5,
__ 1

but a negative (_2,1 - -3) as the time discretization, we can see on the right of Fig. 6.1 that the solution is

oscillatory.

In the next two subsections we discuss the rather disappointing negative results about the non-existence

of high order SSP Runge-Kutta or multi-step methods.

methods. A general implicit Runge-Kutta method for (2.1) can be6.2. Implicit Runge-Kutta

written in the form

u(°) z u n,
i--1

(6.7) u(i) = E OZi'ku(k) -_- At_iL(u(i))' (_i,k >_ O, i = 1, ..., m
k=O

U n-_l = u(m).
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At = 1.4. Left: first-FIG. 6.1. First-order upwind spatial discretization. Solution after 100 time steps at CFL number

order backward-Euler time discretization; Right: non-SSP second-order implicit Runge-Kutta time discretization (6.3)-(6.4)

with /_1 = 2.

Notice that we have only a single implicit L term for each stage and no explicit L terms. This is to avoid

time step restrictions for strong stability properties of explicit schemes. However, since explicit L terms are

contained indirectly beginning at the second stage from u of the previous stages, we do not lose generality

in writing the schemes as the form in (6.7) except for the absence of the L(u (°)) terms in all stages. If these

L(u (°)) terms are included, we would be able to obtain SSP Runge-Kntta methods under restrictions on At

similar to explicit methods.

Clearly, if we assume that the first-order implicit Euler discretization

(6.8) u n+l = u_ + AtL(u _+1)

is unconditionally strongly stable, Nu_+l N -< Nu_N, then (6.7) would be unconditionally strongly stable under

the same norm provided/_i > 0 for all i. If/_i becomes negative, (6.7) would still be unconditionally strongly

stable under the same norm if/_iL is replaced by/_iL whenever the coefficient/_i < 0, with L approximates the

same spatial derivative(s) as L, but is unconditionally strongly stable for first-order implicit Euler, backward

in time:

(6.9) u_+1 = u n - AtL(u_+l).

As before, this can again be achieved, for hyperbolic conservation laws, by solving (2.12), the negative in

time version of (2.2). Numerically, the only difference is the change of upwind direction.

Unfortunately, we have the following negative result which completely rules out the existence of SSP

implicit Runge-Kntta schemes (6.7) of order higher than one.

PROPOSITION 6.1. If (6.7) is at least second-order accurate, then c_i,k cannot be all non-negative.

Proof. We prove that the statement holds even if L is linear. In this case second-order accuracy implies

i--1 1

(6.10) E CCi,k = 1, X._ = 1, Ym =
k=O
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where X,_ and Y_ can be recursively defined as

m--1

(6.11) X1 = _1, Y1 ---/312, Xm =/3m + E (_m,iXi,

i=1

We now show that, if ai,k _ 0 for all i and k, then

1

(6.12) X,_- Y_ < 2'

which is clearly a contradiction to (6.10). In fact, we use induction on m to prove

(6.13)

where

(6.14)

It is easy to show that (6.14) implies

(6.15)

We start with the case m = 1. Clearly,

(1 - a)Xm - Y_ < c,_(1 - a) 2

m--1

i=1

for any real number a,

1 1

Cl = _, Ci+l -- 4(1- Ci)

1 1
-- :Cl <C2 < "'" < Cm < --.
4 2

1

(1 - a)X1 - Y1 = (1 - a)fll - f12 _ 4( 1 _ a)2 = c1(1 - a) 2

for any a. Now assume (6.13)-(6.14), hence also (6.15), is valid for all m < k, for m = k we have

k--1

(1 - a)Xk -- Yk = (1 -- a -- ilk)ilk + _ ak# [(1 -- a -- flk)Xi -- Yi]
i=1

_< (1 - a - ilk)ilk -_- Ck-l(1 -- a -- ilk) 2

1
< (1 - a) 2
- 4(1 - Ck_l)

= Ck(1 -- a) 2

where in the first equality we used (6.11), in the second inequality we used (6.10) and the induction hypothesis

(6.13) and (6.15), and the third inequality is a simple maximum of a quadratic function in ilk. This finishes

the proof. •

We remark that the proof of Proposition 6.1 can be simplified, using existing ODE results in [5], if all

fli's are non-negative or all fli's are non-positive. However, the case containing both positive and negative

fli's cannot be handled by existing ODE results, as L and L do not belong to the same ODE.

6.3. Implicit multi-step methods. For our purpose, a general implicit multi-step method for (2.1)

can be written in the form

m

(6.16) un+l = E OZiun+l--i -_- Atfl°L(un+l)' vei __ O.

i=1

Notice that we have only a single implicit L term and no explicit L terms. This is to avoid time step

restrictions for norm properties of explicit schemes. If explicit L terms are included, we would be able to

obtain SSP multi-step methods under restrictions on At similar to explicit methods.
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Clearly, if we assume that the first-order implicit Euler discretization (6.8) is unconditionally strongly

stable under a certain norm, then (6.16) would be unconditionally strongly stable under the same norm

provided that fl0 > 0. If fl0 is negative, (6.16) would still be unconditionally strongly stable under the same

norm if L is replaced by L.

Unfortunately, we have the following negative result which completely rules out the existence of SSP

implicit multi-step schemes (6.16) of order higher than one.

PROPOSITION 6.2. I] (6.16) iS at least second-order accurate, then (_i cannot be all non-negative.

Proof. Second-order accuracy implies

(6.17) Z _ = 1, Z i_ = _o, i_ = o.
i=1 i=1 i=1

The last equality in (6.17) implies that (_i cannot be all non-negative. •

7. Concluding Remarks. We have systematically studied strong stability preserving, or SSP, time

discretization methods, which preserve strong stability of the forward-Euler (for explicit methods) or the

backward-Euler (for implicit methods) first-order time discretizations. Runge-Kutta and multi-step methods

are both investigated. The methods listed here can be used for method-of-lines numerical schemes for partial

differential equations, especially for hyperbolic problems.
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